The effects of systemic and intracerebral injections of D1 and D2 agonists on brain stimulation reward.
نویسندگان
چکیده
That dopamine (DA) plays a role in reward-related learning is well documented but the mechanisms through which it acts are not well understood. The present set of experiments investigated the role of DA receptor subtypes within DA-innervated forebrain regions in brain stimulation reward (BSR). Thirty-two rats were implanted with electrodes in the ventral tegmental area (VTA) and cannulae aimed at the caudal nucleus accumbens (NAcc), the caudate-putamen (CP) or cortex. Rate-frequency functions were determined by logarithmically decreasing the number of cathodal pulses in a stimulation train from a value that sustained maximal responding to one that did not sustain responding (thresholds). After BSR thresholds stabilized rats received treatments with DA agonists and their effects on thresholds were analyzed. Systemic treatments consisted of injections of (+)-amphetamine (1.0 mg/kg, i.p., 10 min before testing), the D2 agonist quinpirole (1.0 mg/kg, i.p., 10 min before testing), the novel D1 agonist A-77636 (3.0 mg/kg, s.c., 90 min before testing) or their vehicle (distilled H(2)0). Central treatments consisted of microinjections of quinpirole (0.3-10.0 micrograms/0.5 microliter) directly into the caudal NAcc, CP or cortex or A-77636 (30 micrograms/0.5 microliter) into the caudal NAcc or CP. Results showed that all three agonists, when injected systemically, significantly reduced the threshold frequency required for VTA BSR, indicating a potentiative effect on reward. Central injections of quinpirole in the caudal NAcc, CP or cortex produced significant increases in BSR thresholds indicative of reduced rewarding efficacy of stimulation. Central injections of A-77636 into the caudal NAcc, but not the CP, were associated with a reduction in VTA BSR thresholds, suggesting an increase in reward. These results suggest that stimulation of D1 or D2 receptors enhances the rewarding effect of brain stimulation. In the case of the systemic quinpirole enhancement of reward, the present results suggest that this may not occur in the caudal NAcc, CP or cortex. Finally, the present results suggest that D1 receptor stimulation in the caudal NAcc can facilitate reward-related learning.
منابع مشابه
Sensitivity change of dopamine receptors in hippocampus (CA1) and its effect on morphine-induced condition place preference
In the present study, the effects of intra-cerebral hippocampus (CA1) injections of apomorphine D1, D2-like receptors agonists on morphine-induced place preference in male Wistar rats have been investigated. Subcutaneous administration of different dose of morphine sulphate (1, 3, 6 and 9 mg/kg) produced a dose-dependent conditioned place preference (CPP). Intra-cerebral hippocampus (CA1) admin...
متن کاملSensitivity change of dopamine receptors in hippocampus (CA1) and its effect on morphine-induced condition place preference
In the present study, the effects of intra-cerebral hippocampus (CA1) injections of apomorphine D1, D2-like receptors agonists on morphine-induced place preference in male Wistar rats have been investigated. Subcutaneous administration of different dose of morphine sulphate (1, 3, 6 and 9 mg/kg) produced a dose-dependent conditioned place preference (CPP). Intra-cerebral hippocampus (CA1) admin...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملLateral hypothalamus chemical stimulation-induced antinociception was attenuated by injection of dopamine D1 and D2 receptor antagonists in the ventral tegmental area
Introduction: Stimulation or inactivation of the lateral hypothalamus (LH) produces antinociception. Studies showed a role for the ventral tegmental area (VTA) in the antinociception induced by LH chemical stimulation through the orexinergic receptors. In this study, we assessed the role of intra-VTA dopamine D1 and D2 receptors in antinociceptive effects of cholinergic agonist, carbachol, m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 651 1-2 شماره
صفحات -
تاریخ انتشار 1994